undefined


光子芯片实验室创立以来发表的期刊论文:


2025


85.  Z. Zhang *, S. Zhang, X. Liu, Z. Wei, T. Sharma, G. S. Murugan, H. K. Tsang, T. Liu and Z. Cheng *, "Waveguide-integrated optical spectrometers on silicon photonics platforms," Laser and Photonics Reviews; (In Press) 

84. S. Xiao, J. Qi, Y. Wang, G. Hu, Y. Qin, Z. Cheng, Z. Zhang, Q. He * and H. K. Tsang *, "High-speed infrared tellurium photodetector on silicon nitride platform," Nanoscale; (In Press) [link

83. T. Sharma *, B. Painam, X. Liu, Z. Zhang, K. Yu and Z. Cheng, "Hybrid plasmonic waveguide polarization beam splitters on Si3N4-on-SOI platform for broadband operation," Plasmonics; (In Press) 

82. H. Liu, X. Li *, Z. Cheng, T. Liu, J. Zhai and H. Hu *, "Polarimetric image of denoising via non-local based cube matching convolutional neural network," Optics and Lasers in Engineering, vol. 184, pp. 108684, 2025; [link


2024


81. R. Guo +, Q. He +, Z. Zhang +, Y. Xu, S. Zhang, Q. Lang, S. Xiao, P. Han, J. Wang *, T. Ding, T. Liu, H. K. Tsang, K. Goda and Z. Cheng *, "High-Q silicon microring resonator with ultrathin sub-wavelength thicknesses for sensitive gas sensing," Applied Physics Reviews, vol. 11, no. 2, pp. 021417, 2024; [link编辑推荐特色论文, “科学之光”专题报道 [link]

80.  S. Chen +, Y. Sun +, H. Zhang, T. Xu, Z. Zhang, Q. Han, T. Liu, Y. Zou and Z. Cheng *, "Mid-infrared hyperuniform disordered solids waveguide devices with morphology engineering and wall-network regulation," Laser and Photonics Reviews, vol. 18, pp. 2400469, 2024; [link]

79.  R. Guo +, Q. Lang +, Z. Zhang +, H. Hu, T. Liu, J. Wang * and Z. Cheng *, "Suspended nanomembrane silicon photonic integrated circuits," Chipvol. 3, pp. 100104, 2024; [link封面论文

78.  X. Liu, R. Guo, S. Zhang, Z. Zhang *, J. Wang, T. Liu and Z. Cheng *, "Nanomembrane blazed grating coupler for vertical fiber-chip interface," Applied Physics Lettersvol. 125, pp. 111102, 2024; [link]

77.  Y. Wang, R. Guo, Z. Zhang, C. Zou, K. Liu, J. Jiang, T. Liu and Z. Cheng *, "Perfectly vertical subwavelength grating coupler," Optics Lettersvol. 49, no. 19, pp. 5511-5514, 2024; [link]

76. S. Zhang +, Z. Zhang +, R. Guo +, Y. Xu, S. Chen, J. Wang *, T. Liu and Z. Cheng *, "Silicon subwavelength grating coupler with ultra-high reproducibility, ultra-wide bandwidth, and ultra-low back reflection," Journal of Lightwave Technology, vol. 42, no. 15, pp. 5279-5285, 2024; [link]

75. T. Xu, L. Qi, Y. Xu, S. Xiao, Q. Yuan, R. Niu, J. Wang *, H. K. Tsang *, T. Liu and Z. Cheng *, "Giant optical absorption of a PtSe2-on-silicon waveguide in mid-infrared wavelengths," Nanoscalevol. 16, no. 7, pp. 3448-3453, 2024; [link封面论文

74. J. Wang *, H. Zhang, Z. Wei, Y. Xu, R. Guo, G. Wu, X. Li, P. Ding, Y. Du, Y. Geng, X. Li, H. K. Tsang and Z. Cheng *, "Dual-mode microring resonator for humidity sensing with temperature compensation," Sensors and Actuators, B: Chemicalvol. 417, pp. 136167, 2024; [link]

73. Y. Liu, Y. Gao *, R. Niu, Z. Zhang, G. -W. Lu, H. Hu *, T. Liu and Z. Cheng *, "Rapid and accurate bacteria identification through deep-learning-based two-dimensional Raman spectroscopy," Analytica Chimica Acta, vol. 1332, pp. 343376, 2024; [link]

72. 刘星宇,郭荣翔,郎玘玥,刘铁根,程振洲 *,基于光栅耦合技术的光子芯片传感测试系统,仪器仪表学报,45(7):156-164,2024; [link]

71. L. Qi, T. Xu, Z. Xing, S. Chen, Z. Zhang, T. Liu, and Z. Cheng *, "Mid-infrared optoelectronic waveguide devices with two-dimensional materials," Advanced Physics Research, vol. 3, pp. 2400079, 2024; [link]

70. J. Wang *, Y. Xu, Z. Mao, G. Wu, R. Guo, X. Li, Y. Du, Y. Geng, X. Li, H. K. Tsang and Z. Cheng *, "Optical bistability in a silicon nitride microring integrated with 2D PtSe2," Chinese Optics Lettersvol. 22, no. 9, pp. 091301, 2024; [link]

69. T. Sharma *, Z. Zhang, J. Wang, Z. Cheng and K. Yu, "Past, present and future of hybrid plasmonic waveguides for photonics integrated circuits," Nanotechnology and Precision Engineeringvol. 7, pp. 045001, 2024; [link]

68. T. Zhang, Q. Han *, Q. Ma, X. Zheng, J. Jiang, and Z. Cheng, "Intensity demodulation of optical Vernier effect: an intelligent algorithm approach," IEEE Sensors Journal, vol. 24, no. 7, pp. 10084-10090, 2024; [link]

67. 刘贺东,韩宜霖,李校博,程振洲,刘铁根,翟京生,胡浩丰 *,基于深度神经网络的水下图像偏振信息复原方法,光学学报,44(12):1201006,2024; [link]

66. 董昌吉,刘贺东,李校博,程振洲,刘铁根,翟京生,胡浩丰 *,基于偏振约束的四维块匹配偏振图像去噪算法,激光与光电子学进展,61(16):1611017,2024; [link]


2023


65. D. Wan +, T. Li +, S. Chen +, W. Chen +, H. Hu, S. Y. Set, S. Yamashita, L. Shen, Y. Zou *, T. Liu and Z. Cheng *, "Hyperuniform disordered solids with morphology engineering," Laser and Photonics Reviewsvol. 17, no. 11, pp. 2300398, 2023; [link]

64. R. Guo, S. Zhang, H. Gao, G. S. Murugan, T. Liu and Z. Cheng *, "Blazed subwavelength grating coupler," Photonics Research, vol. 11, no. 2, pp. 189-195, 2023; [link]

63. J. Wang, Y. Liu, Z. Mao, J. Wang *, K. Liu, J. Jiang, T. Liu and Z. Cheng *, "Tm3+-doped upconversion nanoparticles water probing," Sensors and Actuators, B: Chemical, vol. 394, pp. 134424, 2023; [link]

62. W. Chen, D. Wan, Q. He, J. Wang *, H. Hu, T. Liu, H. K. Tsang * and Z. Cheng *, "Relaxed-tolerance subwavelength grating coupler," Optics and Laser Technology, vol. 161, pp. 109214, 2023; [link]

61. W. Chen +, Q. He +, R. Guo, D. Wan, Q. Han, H. Hu, J. Wang *, Y. Zou *, T. -H. Xiao, T. Liu and Z. Cheng *, "Theoretical analysis of a mid-infrared Kerr frequency comb in a graphene-on-silicon micro-resonator," Physica Scripta, vol. 98, pp. 065525, 2023; [link]

60. Q. He +, S. Han +, W. Chen, H. Hu, T. Liu and Z. Cheng *, "Graphene-sensitized microring gas sensor probing with a single-wavelength laser," Optics Communicationsvol. 537, pp. 129447, 2023; [link]

59. W. He, Y. Sun, P. Zhou, L. Xia, T. Li, Q. Yi, L. Shen, Z. Cheng and Y. Zou *, "Subwavelength structure engineered passband filter for the 2-um waveband," Optics Letters, vol. 48, no. 3, pp. 827-830, 2023; [link]

58. T. Zhang, Q. Han *, Z. Liang, J. Jiang and Z. Cheng, "A Fabry-Perot sensor with cascaded polymer films based on Vernier effect for simultaneous measurement of relative humidity and temperature,” MDPI Sensorsvol. 23, no. 5, pp. 2800, 2023; [link]

57. H. Liu, X. Li, Z. Cheng, T. Liu, J. Zhai and H. Hu *, “Pol2Pol: self-supervised polarimetric imaging denoising,” Optics Lettersvol. 48, no. 18, pp. 4821-4824, 2023; [link]

56. H. Hu, H. Jin, H. Liu, X. Li, Z. ChengT. Liu and J. Zhai *, “Polarimetric image denoising on small datasets using deep transfer learning,” Optics and Lasers in Engineering, vol. 166, pp. 109632, 2023; [link]

55. H. Hu, S. Yang, X. Li *, Z. Cheng, T. Liu and J. Zhai, "Polarized image super-resolution via a deep convolutional neural network,” Optics Expressvol. 31, no. 5, pp. 8535-8547, 2023; [link]

54. H. Liu, X. Li, Z. Cheng, T. Liu, J. Zhai and H. Hu *, "Polarization maintaining 3D convolutional neural network for color polarimetric images denoising,” IEEE Transactions on Instrumentation and Measurementvol. 72, pp. 5010409, 2023; [link]

53. 梁志状,韩群 *,唐语良,张腾,程振洲,磁光型光纤电流传感器中的磁畴效应及非线性响应研究,光子学报,52(8):0806001,2023; [link]


2022


52. H. Gao +, R. Guo +, *, S. Zhang, C. Lin, T. Liu and Z. Cheng *, "Mid-infrared polarization-insensitive grating coupler," Optics Letters, vol. 47, no. 20, pp. 5381-5384, 2022; [link]

51. W. Chen +, R. Guo +, D. Wan, T. Sharma, L. Zhang, T. Liu and Z. Cheng *, "Design of a graphene-enabled dual-mode Kerr frequency comb," IEEE Journal of Selected Topics in Quantum Electronics, vol. 28, no. 3, pp. 5100107, 2022; [link]

50. R. Guo +, W. Chen +, H. Gao, Y. Zhao, T. Liu and Z. Cheng *, "Is Ge an excellent material for mid-IR Kerr frequency combs around 3-μm wavelengths?" Journal of Lightwave Technology, vol. 40, no. 7, pp. 2097-2103, 2022; [link]

49. R. Guo, H. Gao, T. Liu and Z. Cheng *, "Ultra-thin mid-infrared silicon grating coupler," Optics Letters, vol. 47, no. 5, pp. 1226-1229, 2022; [link]

48. W. Chen, J. Wu, D. Wan, J. Wang, J. Wang *, Y. Zou, Z. Cheng * and T. Liu, "Grating couplers beyond silicon TPA wavelengths based on MPW," Journal of Physics D: Applied Physics, vol. 55, pp. 015109, 2022; [link] JPhysD编辑优选 [link

47. Z. Cheng *, R. Guo, J. Wang *, Y. Wang, X. Xing, L. Ma, W. Wei, Y. Yu *, H. K. Tsang * and T. Liu, "Integrated optoelectronics with Two-Dimensional Materials," National Science Open, vol. 1, no. 3, pp. 20220022, 2022; [link]

46. 贺祺,王亚茹,陈威成,万典,陈斯,高浩然,郭荣翔,王佳琦 *,程振洲 *,余宇 *,刘铁根,短波中红外硅基光子学进展,红外与激光工程,51(3):20220043,2022; [link]

45. J. Wang, Z. Wei, H. Qiu, Z. Xing, Y. Chen, Y. Geng, Y. Du, X. Li * and Z. Cheng *, "In-situ study of dynamics of refractive index changes in silicon devices induced by UV-light irradiation," IEEE Photonics Journal, vol. 14, no. 4, pp. 2235005, 2022; [link]

44. Z. Chen, W. Chen, T. Sharma, Z. Cheng *, G. -W. Lu * and J. Wang *, "Compact waveguide bend with digital metal-structures on the silicon-on-insulator platform," Optikvol. 259, pp. 168968, 2022; [link]

43. Z. Chen, W. Chen, Z. Cheng *G. -W. Lu * and J. Wang *, "Ultra-compact spot size converter based on digital metamaterials," Optics Communications, vol. 508, pp. 127865, 2022; [link]

42. Z. Chen, W. Chen, Z. Cheng, G. -W. Lu and J. Wang *, "Deep learning-assisted enhanced Fano resonances in symmetry-breaking SOI metasurface," IEEE Photonics Journal, vol. 14, no. 1, pp. 5702107, 2022; [link]

41. Z. Liang, Q. Han *, T. Zhang, J. Jiang and Z. Cheng, "Nonlinearity compensation of magneto-optic fiber current sensors based on WOA-BP neural network," IEEE Sensors Journal, vol. 22, no. 20, pp. 19378-19383, 2022; [link]

40. T. Sharma *, J. Wang, Z. Cheng, K. Yu, P. Gangwar, V. Kumar, D. Sharma and B. K. Kaushik, "Low loss hybrid plasmonic waveguide with variable nonlinearity and ultralow dispersion," Plasmonics, vol. 17, pp. 2161-2171, 2022; [link]

39. H. Liu, Y. Zhang, Z. Cheng, J. Zhai and H. Hu *, "Attention based neutral network for polarimetric image denoising," Optics Letters, vol. 47, no. 11, pp. 2726-2729, 2022; [link]

38. P. Qi, X. Li, Y. Han, L. Zhang, J. Xu, Z. Cheng, T. Liu, J. Zhai and H. Hu *, “U2R-pGAN: unpaired underwater-image recovery with polarimetric generative adversarial network,” Optics and Lasers in Engineering, vol. 157, pp. 107112, 2022; [link]

37. Q. Jia, Q. Han *, Z. Liang, Z. Cheng, H. Hu, S. Wang, J. Jiang and T. Liu, "Temperature compensation of optical current fiber sensors with a static bias," IEEE Sensors Journal, vol. 22, no. 1, pp. 352-356, 2022; [link]


2021


36. T. Xiao *Z. Cheng, Z. Luo, A. Isozaki, K. Hiramatsu, T. Itoh, M. Nomura, S. Iwamoto and K. Goda, "All-dielectric chiral-field-enhanced Raman optical activity," Nature Communications, vol. 12, Article 3062, 2021; [link]

35. S. Han +, W. Chen +, H. Hu, Z. Cheng * and T. Liu, "Electric-field-assisted resonance scanning spectroscopy based on graphene-on-silicon dual-mode microring," Journal of the Optical Society of America B, vol. 38, no. 11, pp. 3435-3439, 2021; [link]

34. J. Wang, X. Zhang, Z. Wei, H. Qiu, Y. Chen, Y. Geng *, Y. Du, Z. Cheng * and X. Li, "Design of a dual-mode graphene-on-microring resonator for optical gas sensing," IEEE Access, vol. 9, pp. 56479-56485, 2021; [link]

33. J. Wang, H. Qiu, Z. Wei, Y. Chen, Y. Geng, Y. Du, Z. Cheng * and X. Li *, "Design of a graphene-based waveguide-integrated mutimode phase modulator," IEEE Photonics Journal, vol. 13, no. 4, pp. 2200106, 2021; [link]

32. 郭荣翔,高浩然,程振洲 *,刘铁根,中红外锗基集成光电子研究进展,中国激光,48(19):1901002,2021; [link]

31. Y. Han +, J. Yang +, Y. Deng, H. Hu, Z. Cheng * and T. Liu, "Insight into the temporal response of Yb3+/Tm3+ upconversion luminescence," Optics Communications, vol. 499, pp. 127305, 2021; [link]

30. Y. Han +, J. Yang +, H. Hu, Z. Cheng * and T. Liu, "In-situ host-transition-induced upconversion luminescence modulation of ZrW2O8:Yb3+/Er3+ nanocrystals," Optical Materials, vol. 118, pp. 111218, 2021; [link]

29. Y. Han, J. Yang, Z. Cheng *, F. Song * and T. Liu, "Control of transient states for upconversion emission color adjustment," Journal of Luminescence, vol. 236, pp. 118144, 2021; [link]

28. X. Qi, Y. Han, S. Liu *, H. Hu, Z. Cheng * and T. Liu, "NaYF4:Yb/Tm@SiO2-Dox/Cur-CS/OSA nanoparticles with pH and photon responses," Nanotechnology, vol. 32, pp. 255703, 2021; [link]

27. J. Wang +, R. Guo +, Y. Qin, H. Hu, Z. Cheng *, L. Wang * and T. Liu, "Theoretical study of a water sensor based on a single upconversion microrod," Journal of Physics D: Applied Physics, vol. 54, pp. 165103, 2021; [link]

26. J. Wang, S. Sun, Y. Han, Z. Cheng * and T. Liu, "Theoretical study of luminescence efficiency of Yb3+-Tm3+ co-doped NaGdF4 nanoparticles," Optics Communications, vol. 483, pp. 126663, 2021; [link]

25. E. Zhang, Z. Xing, D. Wan, H. Gao, Y. Han, Y. Gao. H. Hu *Z. Cheng * and T. Liu, "Surface-enhanced Raman spectroscopy chips based on two-dimensional materials beyond graphene," Journal of Semiconductors, vol. 42, no. 5, pp. 051001, 2021; [link] 封面论文

24. T. Sharma, V. Rana, J. Wang *Z. Cheng, Y. Geng, X. Hong, X. Li, K. Yu and B. K. Kaushik, "Design of grating based narrow band reflector on SOI waveguide," Optik, vol. 227, pp. 165995, 2021; [link]

23. H. Wang, H. Hu *, J. Jiang *, X. Li, W. Zhang, Z. Cheng and T. Liu, "Automatic underwater polarization imaging without background region or any prior,"  Optics Express, vol. 29, no. 20, pp. 31283-31295, 2021; [link]

22. H. Wang, J. Li, H. Hu *, J. Jiang *, X. Li, K. Zhao, Z. Cheng, M. Sang and T. Liu, "Underwater imaging by suppressing the backscattered light based on Mueller matrix," IEEE Photonics Journal, vol. 13, no. 4, pp. 7800106, 2021; [link]

21. H. Hu, P. Qi, X. Li *, Z. Cheng and T. Liu *, "Underwater imaging enhancement based on a polarization filter and histogram attenuation prior," Journal of Physics D: Applied Physics, vol. 54, pp. 175102, 2021; [link]

20. H. Wang, H. Hu *, J. Jiang *, J. Li, X. Li, W. Zhang, Z. Cheng and T. Liu, "Polarization differential imaging in turbid water via Mueller matrix and illumination modulation," Optics Communications, vol. 483, pp. 127274, 2021; [link]


2020


19. N. Chen +, T. Xiao +, *, Z. Luo, Y. Kitahama, K. Hiramatsu, T. Itoh, Z. Cheng and K. Goda, "Porous carbon nanowire array for surface-enhanced Raman spectroscopy," Nature Communications, vol. 11, Article 4772, 2020; [link]

18. J. Wu, G. Yue, W. Chen, Z. Xing, J. Wang *, W. R. Wong, Z. Cheng *, S. Y. Set, G. S. Murugan, X. Wang * and T. Liu, "On-chip optical gas sensors based on group-IV materials," ACS Photonics, vol. 7, pp. 2923-2940, 2020; [link]

17. G. Yue +, Z. Xing +, H. Hu, Z. Cheng *, G. -W. Lu * and T. Liu, "Graphene-based dual-mode modulators," Optics Express, vol. 28, no. 12, pp. 18456-18471, 2020; [link

16. S. Han, W. Chen *, H. Hu, Z. Cheng * and T. Liu, "Characterization of a mid-infrared graphene-on-silicon microring with a monochromatic laser," Journal of the Optical Society of America B, vol. 37, no. 6, pp. 1683-1688, 2020; [link]

15. W. Chen, G. Yue, H. Hu, G. -W. Lu *Z. Cheng * and T. Liu, "Dual-mode GVD tailoring in a convex waveguide," IEEE Photonics Journal, vol. 12, no. 4, pp. 6601506, 2020; [link]

14. J. Wang, Z. Xing, X. Chen, Z. Cheng *,  X. Li * and T. Liu, "Recent progress in waveguide-integrated graphene photonic devices for sensing and communication applications," Frontiers in Physics, vol. 8, Article 37, 2020; [link]

13. T. Sharma, J. Wang *, B. K. Kaushik, Z. Cheng, R. Kumar, Z. Wei and X. Li, "Review of recent progress on silicon nitride-based photonic integrated circuits," IEEE Access, vol. 8, 195436-195446, 2020; [link]

12. X. Li, H. Li, Y. Lin, J. Guo, J. Yang, H. Yue, K. Li, C. Li, Z. Cheng, H. Hu * and T. Liu, "Learning-based denoising for polarimetric images," Optics Express, vol. 28, no. 11, pp. 16309-16321, 2020; [link]

11. H. Wang, J. Jiang, H. Hu *, Z. Sun, Z. Zheng, Z. Cheng and T. Liu, "Temperature compensation of optical alternating magnetic field sensor via a novel method for on-line measuring," Optics Express, vol. 28, no. 9, pp. 13682-13693, 2020; [link]

10. H. Hu, Y. Zhang, X. Li, Y. Lin, Z. Cheng and T. Liu *, "Polarimetric underwater image recovery via deep learning," Optics and Lasers in Engineering, vol. 133, pp. 106152, 2020; [link]

9. T. Liu, Z. Guan, X. Li, Z. Cheng, Y. Han, J. Yang, K. Li, J. Zhao and H. Hu *, "Polarimetric underwater image recovery for color image with crosstalk compensation," Optics and Lasers in Engineering, vol. 124, pp. 105833, 2020; [link]


2019


8. Z. Xing, C. Li, Y. Han, H. Hu, Z. Cheng * and T. Liu, "Design of on-chip polarizers based on graphene-on-silicon nanowires," Applied Physics Express, vol. 12, no.7, pp. 072001, 2019; [link]

7. Z. Xing, C. Li, Y. Han, H. Hu, Z. Cheng *, J. Wang * and T. Liu, "Waveguide-integrated graphene spatial mode filters for on-chip mode-division multiplexing," Optics Express, vol. 27, no.14, pp. 19188-19195, 2019; [link]

6. Y. Han, J. Wang, H. Wan, S. Wang, H. Hu, T. Xiao *Z. Cheng * and T. Liu, "Solution processable transition metal dichalcogenides-based hybrids for photodetection," Nano Materials Science, vol. 1, no.4, pp. 288-289, 2019; [link]

5. W. Zhou, Z. Cheng, X. Chen, K. Xu, X. Sun and H. K. Tsang *, "Subwavelength engineering in silicon photonic devices," IEEE Journal of Selected Topics in Quantum Electronics, vol. 25, no. 3, pp. 2900113, 2019; [link]

4. J. Wang, L. Zhang *, Y. Chen, Y. Geng, X. Hong, X. Li * and Z. Cheng, "Saturable absorption in graphene-on-waveguide devices," Applied Physics Express, vol. 12, no. 3, pp. 032003, 2019; [link]

3. H. Wang, H. Hu *, L. Zhao, Z. Guan, J. Jiang, K. Liu, Z. Cheng and T. Liu, "Joint noise reduction for contrast enhancement in Stokes polarimetric imaging," IEEE Photonics Journal, vol. 11, no. 2, pp. 6901010, 2019; [link]

2. Z. Guan, F. Goudail, M. Yu, X. Li, Q. Han, Z. Cheng, H. Hu * and T. Liu, "Contrast optimization in broadband passive polarimetric imaging based on color camera," Optics Express, vol. 27, no. 3, pp. 2444-2454, 2019; [link]

1. X. Li, H. Hu *, L. Zhao, H. Wang, Q. Han, Z. Cheng and T. Liu, "Pseudo-polarimetric method for dense haze removal," IEEE Photonics Journal, vol. 11, no. 1, pp. 6900611, 2019; [link]


光子芯片实验室授权/申请的部分专利:


15一种纳米薄膜闪耀光栅耦合器,202411092288.X;

14一种无序超均匀固体器件的网格优化方法,202410659505.2;

13. 一种基于波导器件测试的芯片空间映射定位方法,202310745272.3;

12. 一种基于纳米级厚度微型谐振腔的气体传感器件,202310683345.0;

11. 一种基于形貌修饰的无序超均匀固体器件优化方法,202310698203.1;

10. 一种基于拉曼光谱二维化结合深度学习的细菌高效识别技术,202310709484.6;

9. 一种闪耀亚波长光栅耦合器,202211225703.5;

8. 一种基于二维材料纳米带的多模克尔光频梳产生器件,ZL202210226723.8;

7. 一种基于图像识别的光栅耦合器定位测量方法,ZL20211018302.1;

6. 一种用于双参量测量的单波长双模谐振片上传感器,ZL202121101734.0;

5. 一种谐振腔增强的单片集成传感器及测量方法,ZL202010188882.4;

4. 一种多功能光子芯片检测系统,ZL202010260549.X;

3. 一种新型的凸型多模光波导及多模色散调控方法,ZL202010623165.X;

2. 一种基于石墨烯的波导集成的多模光电调制器及制作方法,ZL201910413746.8;

1. 基于石墨烯的波导集成的偏振光耦合器及其制作方法,ZL201910330399.2;


光子芯片实验室成立前(2019年),实验室成员发表的学术成果详见个人ResearchGate网站。